Учебная работа. Процесс построения опоры для линии электропередачи в условиях ветрености: необходимые качества

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

процесс построения опоры для линии электропередачи в условиях ветрености: необходимые качества

Содержание

1. Расчёт
проводов ЛЭП на прочность

1.1
Постановка задачи и исходные данные

1.2
Определение характеристик провода

1.3
Определение расчётной нагрузки для каждого режима

1.4
Вычисление длины критических пролётов

1.5 Расчёт
кривых провисания провода

2. Расчёт
опоры ЛЭП

2.1
Постановка задачи и исходные данные

2.2 Расчёт
ветровой нагрузки, действующей на опору

2.3
Определение усилий в стержнях фермы

2.4 Подбор
безопасных размеров поперечного сечения стержней фермы



1. Расчёт проводов ЛЭП на прочность

1.1 Постановка задачи и исходные данные

Цель курсового проекта: Спроектировать линию электропередачи
(ЛЭП) и рассчитать для неё опоры при заданном ветровом районе по гололёду.

Для заданной линии ЛЭП необходимо определить нагрузки,
действующие на провод для трех расчётных режимов, напряжения в проводе, стрелу
провеса, величину наибольшего провисания и её координаты, первоначальную длину
провеса.

построить кривые провисания проводов.

При расчёте принято:

длина пролета l = 300 м;

разность уровней точек подвеса h =
35 м;

марка провода по ГОСТ 839-59 — АС-400;

район по гололёду — IV;

район по ветру — VI;

температура, при которой подвешен провод Т0 = 0°С;

среднегодовая температура TIII
= 0°С;

минимальная температура TI
= — 40°С;

коэффициент скоростного напора k = 1.

1.2 Определение характеристик провода

Площадь сечения провода F = 493,3 мм2.

Расчётный диаметр провода d = 29 мм.

Расчётный вес провода qп
= 1,840 даН/м.

Модуль упругости материала Е = 8900 даН/мм2.

Коэффициент температурного линейного расширения  град -1.

1.3 Определение расчётной нагрузки для каждого
режима

1.3.1 I режим — минимальной температуры
(TI = — 40°С;
гололёд и ветер отсутствуют). Интенсивность нагрузки от собственного веса для
провода марки АС-300 по ГОСТ 839-59

 даН/м

Удельная нагрузка

1.3.2 II режим — максимальной
нагрузки (TII = — 5°С; гололёд и ветер)

Толщина стенки гололёда b = 20 мм (IV район).

Скоростной напор ветра  даН/м2
(I район; при наличии гололёда скоростной напор
принимается равным 25% от нормативного qн).

Удельный вес льда провода

.

Интенсивность нагрузки от гололёда:

 даН/м.

Интенсивность нагрузки от давления ветра:

 даН/м

(Здесь с = 1,2 — аэродинамический коэффициент).

Суммарная интенсивность нагрузки:

 даН/м.

Удельная нагрузка

1.3.3 III режим — среднегодовой
температуры (TI = 0°С; гололёд и ветер отсутствуют).

Как и для I режима:

 даН/м; .

Вычисленные нагрузки и допускаемые напряжения для трёх
режимов сведены в таблицу.

Расчётный режим

Допускаемые напряжения, даН/мм2

температура Т, °С

Интенсивность нагрузки, даН/м

Удельная нагрузка,

I

II

III

11,5

13,0

7,75

40

5

0

1,840

4,82

1,840

0,00372

0,00372



1.4 Вычисление длины критических пролётов

Длину критических пролётов вычисляем по формуле:

По этой формуле находим, принимая

0,9933

Полученное соотношение критических величин пролётов ( ) соответствует
случаю № 2, пролеты  и  в
этом случае фиктивные, физического смысла не имеют и находятся на пересечении
прямой III — III
с продолжением кривых I — III и II — III (см. рис.1) Для пролетов L расчет.
< L 2 кр. исходным является режим I,
а при L расчет. > L 2 крит. режим
II, где L расчет. — длина
пролета, по которому ведется расчет (задана по условию).

рисунок 1

 

1.5 Расчёт кривых провисания провода

1.5.1 Режим II. Горизонтальное
натяжение нити:

даН.

Величина наибольшего провисания:

Абсцисса, определяющая положение низшей точки:

Из решения видно, что низшая точка кривой провисания лежит
за пределами пролета.

Стрела провисания

м

Конечная длина провода

первоначальная длина провода

По выполненным расчётам строим кривую провисания провода

(рис.2).

Рис.2

1.5.2 Режим I

Для режима I используем уравнение
состояния провода

где индекс m означает исходный
режим, индекс n — исследуемый
режим.

В нашем случае имеем:

или

После упрощения получим:

откуда  даН/мм2.

дальнейший расчёт проводим аналогично расчёту режима II:

даН;

;

;

;

По полученным данным строим кривую провисания провода
аналогично режиму I (см. рисунок 3).

Рис.3

1.5.2 Режим III

Для режима III имеем:

или

После упрощения получим:

откуда  даН/мм2.

даН;

;

;

;

По полученным данным строим кривую провисания провода
аналогично режиму III (см. рисунок 4).



2. Расчёт опоры ЛЭП

2.1 Постановка задачи и исходные данные

Для расчётной схемы опоры ЛЭП необходимо:

определить интенсивность давления на ферму ветровой нагрузки
(район по ветру I);

определить усилия в элементах плоской фермы;

подобрать из условия устойчивости безопасные размеры
поперечного сечения отдельно для поясов и раскосов решетки в виде равнобокого
уголка;

При расчёте принять:

допускаемые напряжения при растяжении и сжатии для прокатных
профилей даН/см2 (210 МПа);

допускаемые напряжения для сварных швов, болтов, заклёпок на
срез даН/см2 (130 МПа); на
смятие  даН/см2 (340 МПа);

сосредоточенный момент

сосредоточенная сила Р = 1000 даН (0,01 МН);

параметр а = 2 м.

2.2 Расчёт ветровой нагрузки, действующей на опору

Определим величину расчётного скоростного напора:

 даН/м2,

 

Где даН/м2 –

скоростной напор ветра (VI район)

n = 1,3 — коэффициент перегрузки для
высотных сооружений;

k =1 — поправочный коэффициент
изменения скоростного напора, зависящий от высоты и типа местности (см. п.1.1).

Коэффициент лобового сопротивления для пространственной
четырёхгранной фермы при направлении ветра на грань:

где

Сх = 1,4 — аэродинамический коэффициент для
плоской фермы;

m = 0,3 — коэффициент увеличения
давления ветра на подветренную грань, зависящий от типа решетки.

Площадь проекции опоры на плоскость, перпендикулярную
направлению ветра (рисунок 3):

,

где

м2 — площадь
проекции прямоугольной части;

м2 — площадь
проекции трапециевидной части;

-угол наклона боковой
стороны трапеции к ветру.

При этих значениях получим:

м2.

Вычисляем давление ветра на опору:

даН,

где

b = 1,5 —
коэффициент увеличения скоростного напора, учитывающий его динамичность и
пульсацию;

поправочный коэффициент
при действии ветра на ребро;

расчётная площадь проекции
конструкции по наружному обмеру на плоскость, перпендикулярную направлению
ветра; здесь  коэффициент заполнения плоской
фермы.

Интенсивность ветровой нагрузки

даН/м.

Принимаем qw = 131 даН/м.

2.3 Определение усилий в стержнях фермы

2.3.1 Определение узловой нагрузки

Интенсивность распределённой нагрузки разносим по узлам
фермы. Усилие, приходящееся на одну панель, определяем по формуле:

 тогда

2.3.2 Вычисление реакций в опорах

Из условий равновесия:

Рис.5

Вычисление усилий в стержнях фермы

Для определения усилий в стержнях используем метод сечений и
способ вырезания узлов.

рис.7

сечение I — I (рис.7)

Условия равновесия:

рис.8

рис.9

2) сечение 2 — 2 (рис.9)

Условия равновесия:

рис.10

Рис.11

3) сечение 3 — 3 (рис.11)

Условия равновесия:

Рис.12

сечение 4 — 4 (рис.15)

Рис.13

 

Рис.14

 

рис.15

Сечение 5-5 (рис.18)

Рис.16

Условия равновесия:

Рис.17

Рис.18

Сечение 6-6 (рис. 20)

Условия равновесия:

Рис. 19

Рис. 20

Рис.21

сечение 7-7 (рис.24)

Рис.22

Рис.23

Условия равновесия:

По найденным значениям строим эпюры внутренних усилий в
стержнях фермы (рис.25).

Рис.24

рис.25



2.4 Подбор безопасных размеров поперечного сечения
стержней фермы

Наибольшее сжимающее усилие в поясе даН.

безопасные размеры поперечного сечения равнобокого уголка
находим из условия прочности при растяжении:

Из условия устойчивости при сжатии имеем:

принимая j0
= 0,5 в первом приближении. Согласно ГОСТ 8509-57, по сортаменту выбираем
равнобокий уголок 100´100´10, для которого F
= 19,2 см2 и imin
= 1,96 см. Вычисляем гибкость стержня, считая элементы пояса шарнирно
закреплёнными по концам:

По справочной таблице для гибкости l = 103,6, используя линейную интерполяцию, находим:

По сортаменту окончательно выбираем равнобокий уголок 100´100´10,
для которого A = 19,2 см2 и imin = 1,98 см.

Аналогичным образом определяем необходимые размеры сечения
для стержней решётки.

Из условия устойчивости при сжатии имеем:

принимая j0
= 0,5 в первом приближении.

Согласно ГОСТ 8509-93, по сортаменту выбираем равнобокий
уголок 63´63´4, для которого F
= 4,96 см2 и imin
= 1,25 см.

Вычисляем гибкость стержня, считая элементы пояса шарнирно
закреплёнными по концам:

гибкость очень велика, поэтому выбираем равнобокий уголок 80´80´7,
для которого F = 10,8 см2 и imin = 1,58 см.

гибкость стержня

Окончательно принимаем для раскосов уголок 80´80´7.

Учебная работа. Процесс построения опоры для линии электропередачи в условиях ветрености: необходимые качества