Учебная работа. Исследование потока в неподвижном криволинейном канале

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

исследование потока в неподвижном криволинейном канале

Федеральное
агентство по образованию

Государственное
образовательное учреждение

высшего
профессионального образования

«Казанский
государственный технологический университет»

Кафедра
холодильной техники и технологий

(ХТиТ)

ОТЧЕТ

о
лабораторной работе по дисциплине «Газовая динамика»

«ИССЛЕДОВАНИЕ
ПОТОКА В неподвижном КРИВОЛИНЕЙНОМ КАНАЛЕ»

Казань 2008

Цель работы: ознакомление с методами экспериментального исследования
потока в неподвижных каналах; определение потерь механической энергии при
движении потока в неподвижных каналах.

Экспериментальная
установка

Экспериментальная модель
представляет собой плоский криволинейный канал квадратного поперечного сечения
с углом изогнутости оси 90° (рисунок 1). Для возможности визуального
исследования потока верхняя стенка модели выполнена из прозрачного материала.

а)                                                                        б)

рисунок 1 – Схема
исследуемого канала (а, б)

С помощью фланца модель
криволинейного канала крепится к всасывающему патрубку вентилятора. Для
предотвращения всасывания в вентилятор посторонних предметов в выходном сечении
канала, установлена металлическая сетка.

Визуальное исследование
потока в канале производится с помощью шёлковых нитей, закреплённых на конце
металлического прутка. Ввод нитей в исследуемую зону потока осуществляется
через входное отверстие криволинейного канала.

Экспериментальные
данные

Экспериментальные
данные приведены в таблице 1.

Таблица
1 – протокол измерений

сечение

Измеряемая величина,

мм вод. cт.

№ точки

1

2

3

4

5

6

7

А-А

Dh*

4

0,8

0

0

0

0

0

Dh

30

30

30

30

30

30

30

В-В

Dh*

8

2,5

0,7

0,5

0,5

0,5

0,5

Dh

30

32

34

34

33

33

33

В, мм. рт.ст.

750

t,°C

18

Таблица
1 — продолжение

сечение

Измеряемая
величина,

мм
вод. cт.


точки

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

А-А

Dh*

0

0

0

0

0

0

0

0

0

0

0

0

0

0,5

1

4

Dh

30

30

28

28

28

28

26

26

24

24

22

22

20

18

17

17

В-В

Dh*

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

1

1

1

1,2

1

1

Dh

31

31

29

29

27

27

25

24

19

19

22

22

18

16

14

13

В, мм. рт.ст.

750

t,°C

18

Обработка
результатов

1. учитывая небольшое различие в
величинах статических давлений в точках 1-23 сечений А-А и В-В и
барометрического давления, приняли одинаковое значение плотности воздуха во
всех исследованных точках:

, кг/м3,

где R = 287 Дж/(кг×К) — газовая постоянная для сухого
воздуха;

Т = (273 + t)=(273 + 18)=291 — температура потока, К;

В’ = В ×133,332=750×133,332=99999 ,Па.

,
кг/м.

2. занесли в протокол обработки
результатов (табл.4) значения измеренных перепадов между полным и
барометрическим давлением (для точек i=1…7):

 Па.

 —
перепад уровня в дифманометрах в трубках полного давления (ТПД).

,
Па.

3. Вычислили действительное значение
разности между статическим и барометрическим давлениями:

 Па,

где к=0,8 — поправочный коэффициент трубки
статического давления (ТСД);

 – перепад уровня в
дифманометрах, в трубках статического давления (ТСД).

, Па.

4. Определили динамическое давление в
точках сечений А-А и В-В:

 Па,

где , Па;

, Па.

, Па.

5. Полагая поток несжимаемым, нашли
величину скорости во всех исследованных точках потока по формуле:

, м/с.

, кг/м;

, Па.

, м/с.

проделали
с 1-5 пункты двух сечений и для всех точек. полученные значения приведены в
таблице 2.

Таблица
2 – Таблица обработки экспериментальных данных

сечение

Вычисляемая
величина

Размерность


точки

1

2

3

4

5

6

7

А-А

Па

235,4

235,4

235,4

235,4

235,4

235,4

235,4

Па

39,24

7,85

0

0

0

0

0

Па

196,2

227,6

235,4

235,4

235,4

235,4

235,4

м/с

18,1

19,5

19,8

19,8

19,8

19,8

19,8

В-В

Па

235,4

251,1

266,8

266,8

258,9

258,9

258,9

Па

78,5

24,5

6,9

4,9

4,9

4,9

4,9

Па

156,9

226,6

259,9

261,9

254,1

254,1

254,1

м/с

16,2

19,5

20,9

20,9

20,6

20,6

20,6

Таблица
2 — продолжение

сечение

Вычисляемая
величина

Размерность


точки

8

9

10

11

12

13

14

А-А

Па

235,4

235,4

219,7

219,7

219,7

219,7

204,1

Па

0

0

0

0

0

0

0

Па

235,4

235,4

219,7

219,7

219,7

219,7

204,1

м/с

19,8

19,8

19,2

19,2

19,2

19,2

18,5

В-В

Па

243,3

243,3

227,6

227,6

211,9

211,9

196,2

Па

4,91

4,91

4,91

4,91

4,91

4,91

4,91

Па

238,4

238,4

222,7

206,9

206,9

191,3

м/с

19,96

19,96

19,3

19,3

18,6

18,6

17,9

Таблица
2 — продолжение

сечение

Вычисляемая величина

Размерность

№ точки

15

16

17

18

19

20

21

А-А

Па

204,1

188,4

188,4

172,7

172,7

156,9

141,3

Па

0

0

0

0

0

0

4,1

Па

204,1

188,4

188,4

172,7

172,7

156,9

137,2

м/с

18,5

17,8

17,8

16,9

16,9

16,2

15,1

В-В

Па

188,4

149,1

149,1

172,7

172,7

141,3

125,6

Па

4,9

4,9

4,9

9,8

9,8

9,8

11,8

Па

183,5

144,2

144,2

162,9

162,9

131,5

113,8

м/с

17,5

15,5

15,5

16,5

16,5

14,8

13,8

Таблица
2 — продолжение

сечение

Вычисляемая величина

Размерность

№ точки

22

23

А-А

Па

133,4

133,4

Па

9,81

39,2

Па

123,6

94,2

м/с

14,4

12,6

В-В

Па

109,9

102,02

Па

9,81

9,81

Па

100,1

92,2

м/с

12,9

12,4

6. Графики распределения скорости в
сечениях А-А и В-В.

рисунок
2 – График распределения скорости в сечении А-А

рисунок
3 – График распределения скорости в сечении В-В

7. нашли среднее значение скорости в
сечении А-А, применяя формулу трапеций для нахождения площади под графиком скорости:

Нашли среднее

Изобразили эти средние
значения скорости на графиках распределения скоростей.

8. нашли значение  и в сечениях А-А и В-В:

,

где ;

.

Расчётные величины
приведены в таблице 3.

Таблица 3 – Таблица
обработки экспериментальных данных

сечение

Вычисляемая величина

номер точки

1

2

3

4

5

6

7

8

9

А-А

18,1

19,5

19,8

19,8

19,8

19,8

19,8

19,8

19,8

0,9

0,98

1

1

1

1

1

1

1

0,04

0,08

0,12

0,16

0,21

0,25

0,29

0,33

0,37

В-В

16,2

19,5

20,9

20,9

20,6

20,6

20,6

19,96

19,96

0,77

0,93

0,99

1

0,99

0,99

0,99

0,95

0,95

0,04

0,08

0,12

0,16

0,21

0,25

0,29

0,33

0,37

Таблица 3 — продолжение

сечение

Вычисляемая величина

номер точки

10

11

12

13

14

15

16

17

18

А-А

19,2

19,2

19,2

19,2

18,5

18,5

17,8

17,8

16,9

0,97

0,97

0,97

0,97

0,93

0,93

0,89

0,89

0,86

0,41

0,45

0,49

0,53

0,57

0,62

0,66

0,69

0,74

В-В

19,3

19,3

18,6

18,6

17,9

17,5

15,5

15,5

16,5

0,92

0,92

0,89

0,89

0,85

0,84

0,74

0,74

0,79

0,41

0,45

0,49

0,53

0,57

0,62

0,66

0,69

0,74

Таблица 3 — продолжение

сечение

Вычисляемая величина

номер точки

19

20

21

22

23

А-А

16,9

16,2

15,2

14,4

12,6

0,86

0,82

0,76

0,73

0,63

0,78

0,82

0,86

0,9

0,94

В-В

16,5

14,8

13,8

12,9

12,4

0,79

0,71

0,66

0,62

0,6

0,78

0,82

0,9

0,94

9. Графики зависимости  от  для
каждого сечения.

Рисунок 4 – Эпюра
скорости на входе в криволинейный канал

Рисунок 5 – Эпюра
скорости на выходе в криволинейный канал

поток неподвижный канал потери энергия

10. определили среднее
значение динамического давления на входе в канал:

 Па .

.

11.
Принимая статическое давление на выпуклой стенке канала в сечениях А-А и В-В
равным статическому давлению в точке 1, а на вогнутой — равным давлению в точке
23 и учитывая равенство полного и статического давлений на стенках канала,
определили для этих сечений среднее

, Па.

Полученные
значения  и  являются приближенными.
Для нахождения более точных значений необходимо произвести измерения в
нескольких сечениях по высоте канала.

12. нашли потери полного давления в
канале:

.

13. Вычислили коэффициент потерь энергии
криволинейного канала:

.

;

14. Вычислили потери
полного давления по экспериментальным данным.

,

где

 ;

 —
линейный коэффициент
сопротивления трения участка;

 м

м/с
– кинематическая
вязкость

Па

Вывод: в ходе данной
работы мы ознакомились с методами экспериментального исследования потока в
неподвижных каналах, а также экспериментально определили коэффициент потери
энергии установки и сравнили его с теоретическим.

список использованной
литературы

1. Газодинамика. Компрессорные и
расширительные машины: Метод. указания к лаб. работам / Казан. гос. технол.
ун-т; Сост.: А.А. Никитин, С.В. Визгалов. Казань, 2004. 44 с.

2. Идельчик И.Е. Справочник по
гидравлическим сопротивлениям. — М.: Машиностроение, 1975.- 559 с.

 .ru

Учебная работа. Исследование потока в неподвижном криволинейном канале