Учебная работа № /3647. «Контрольная Физика. Задачи 1-8 2

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Количество страниц учебной работы: 11

Учебная работа № /3647. «Контрольная Физика. Задачи 1-8 2


Содержание:
Содержание
Задача 1 Материальная точка движется прямолинейно с ускорением а = 5м/с2. Определить, на сколько путь, пройденный точкой в n-ю секунду, будет больше пути, пройденного в предыдущую секунду. Принять V0= 0.3
Задача 2 На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски сто¬ит человек. Масса его m = 60 кг, масса доски M = 20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) V1 = 1 м/с? Массой колес и тре¬нием пренебречь. 4
Задача 3 Шар, двигавшийся горизонтально, столкнулся с неподвижным шаром и передал ему 64 % своей кинетической энергии. Шары, абсолютно упругие, удар прямой, центральный. Во сколько раз масса второго шара больше массы первого? 5
Задача 4 На верхней поверхности горизонтального диска, который может вращаться вокруг вертикальной оси, проложены по окружности радиусом r = 50 см рельсы игрушечной железной дороги. Масса диска М = 10кг, его радиус R = 60 см. На рельсы неподвижного диска был поставлен заводской паровозик массой m = 1 кг и выпущен из рук. Он начал двигаться относительно рельсов со скоростью v = 0,8 м/с. С какой угловой скоростью будет вращаться диск? 6
Задача 5 Определить период Т колебаний математического маятника, если его модуль максимального перемещения ?r = 18 см и максимальная скорость vmax = 16 см/с. 7
Задача 6 В баллоне вместимостью V = 15 л находится смесь, содержащая m1 = 10 г водорода, m2 = 54 г водяного пара и m3 = 60 г оксида углерода. Температура смеси t = 27°. Определить давление. [1,69 МПа]. 8
Задача 7 Во сколько раз увеличится объем водорода, содержащий количество вещества ?= 0,4 моль при изотермическом расширении, если при этом газ получит количество теплоты Q = 800 Дж? Температура водорода T = 300 К. 9
Задача 8 Вычислить удельные теплоемкости газа, зная, что его молярная масса M = 4•10 3 кг/моль и отношение теплоемкостей Cp/Cv = 1,67. 10
Список литературы 11

Стоимость данной учебной работы: 585 руб.Учебная работа № /3647.  "Контрольная Физика. Задачи 1-8 2
Форма заказа готовой работы

    Форма для заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    М

    Хабаровск 2015

    Задача №1: Расчет характеристик установившегося прямолинейно-параллельного фильтрационного потока несжимаемой жидкости,

    Задание:

    — Вывести формулу дебита галереи скважин при установившейся фильтрации несжимаемой жидкости и выполнить расчеты при имеющихся данных

    Дано:

    , МПа

    , МПа

    L, км

    B, м

    h, м

    , мПа*с

    , кг/м?

    k, мкм?

    15

    9,5

    7,0

    8,5

    140,0

    7,0

    2,5

    925

    0,5

    Решение:

    1) Горизонтальный пласт с непроницаемой кровлей и подошвой представляется прямоугольником с высотой h и шириной В,

    Выберем систему координат: начальную координату поместим на площадь контура питания, Название «контур питания» обусловлено тем, что, согласно постановке задачи через плоскость х=O происходит приток в пласт жидкости, которая далее фильтруется к галерее х=L, Ось Ох направим параллельно вектору скорости фильтрации, Давление и скорость фильтрации зависят только от координаты х,

    2) Математическая модель одномерной фильтрации:

    Даны граничные условия, т,е, значения давления на контуре питания и галерее:

    при x =0;

    при x =L=8,5 км;

    3) Решение уравнений

    4) Умножив скорость фильтрации на площадь галереи S=Bh, получим:

    ;

    5) Вычислим дебит галереи:

    6) Зависимость дебита Q от депрессии ?p:

    где депрессия на пласт:

    7) Коэффициент продуктивности пласта:

    Задача №2: Расчет характеристик установившегося плоскорадиального потока несжимаемой жидкости,

    давление жидкость продуктивность фильтрационный

    Задание:

    — Вывести формулу дебита скважины, построить индикаторную линию при установившейся плоскорадиальной фильтрации несжимаемой жидкости,

    — Определить средневзвешенное пластовое давление, построить депрессионную кривую давления,

    — Определить, не нарушается ли закон Дарси в призабойной зоне скважины,

    — Выполнить расчеты при и��еющихся данных,

    Дано:

    ,

    МПа

    ,

    МПа

    ,

    м

    ,

    м

    h,

    м

    ,

    мПа*с

    ,

    кг/м?

    k,

    мкм?

    m/100

    15

    9,5

    7,0

    2000

    0,2

    5

    2,5

    925

    0,3

    0,25

    Решение:

    1) Рассматривается плоскорадиальная фильтрация несжимаемой жидкости к совершенной скважине в горизонтальном круговом пласте толщиной h и радиуса ,

    Центральная скважина имеет радиус , на забое скважины поддерживается постоянное давление , На боковой поверхности поддерживается давление , и через нее происходит приток флюида, равный дебиту скважины,

    2) Установившаяся фильтрация описывается уравнением Лапласа в цилиндрической системе координат:

    Согласно принятой схеме течения, искомые функции не зависит от ? и от z,

    3) Фильтрация описывается системой уравнений:

    p==9,5 МПа при =2000м

    p==7,0 МПа при

    4) Решение системы уравнений имеет вид

    5) Дебит скважины

    6) Подставим скорость фильтрации:

    7) Получим выражение для дебита скважины, называемое формулой Дюпюи:

    8) C помощью формулы Дюпюи распределение давления в пласте преобразуем к виду:

    9) Средневзвешенное пластовое давление:

    10)

    11) Подставим зависимость давления и проинтегрируем от до , получим:

    12) Зависимость распределения давления:

    13) Зависимость для построения индикаторной линии:

    14) Вычислим скорость фильтрации в призабойной зоне:

    15) Определим число Рейнольдса по формуле Щелкачева:

    Критические значения числа Рейнольдса лежат в интервале 0,0080-14, Итак, мы убедились, что закон Дарси не нарушается,

    Задача №3: Расчет характеристик установившегося прямолинейно-параллельного фильтрационного потока совершенного газа,

    Задание:

    — Получить формулу и построить графическое распределение давления и вычислить приведенный расход галереи скважин,

    — Определить коэффициент продуктивности,

    Дано:

    ,

    МПа

    ,

    МПа

    L,

    км

    B,

    м

    h,

    м

    ,

    мПа*с

    k,

    мкм?

    15

    9,5

    7,0

    8,5

    140

    7

    0,014

    0,5

    Решение:

    1) В реальных условиях, когда плотность, вязкость флюида и проницаемость пласта зависят от давления, функция Лейбензона:

    2) При постоянных значениях проницаемости пласта и вязкости жидкости функция Лейбензона:

    3) Дифференциал функции Лейбензона:

    4) Уравнение движения для прямолинейно-параллельной фильтрации несжимаемой жидкости в однородной среде:

    5) Умножим уравнение на плотность ?(p) и используем функцию Лейбензона, Получим:

    6) Уравнение неразрывности для установившейся одномерной фильтрации имеет вид:

    7) Подставляя ,получим:

    8) Таким образом, при установившейся фильтрации функция Лейбензона удовлетворяет уравнению Лапласа, Формулы, полученные для установившейся фильтрации несжимаемой жидкости по закону Дарси, справедливы и для установившейся фильтрации газа, Нужно лишь заменить соответствующие переменные:

    · объемный расход — на массовый расход;

    · давление — на функцию Лейбензона;

    · объемную скорость фильтрации — на массовую скорость фильтрации,

    9) Уравнение состояния идеального газа

    10) Получим функцию Лейбензона для идеального газа:

    11) Распределение давления в прямолинейно-параллельном фильтрационном потоке несжимаемой жидкости является решением уравнения Лапласа:

    12) Подставив

    13) Получим распределение давления в прямолинейно-параллельном потоке идеального газа:

    14) При фильтрации газа вместо скорости фильтрации для несжимаемой жидкости:

    определяют массовую скорость фильтрации газа, заменяя давление pна функцию Лейбензона P, т,е,

    или для идеального газа:

    15) Используя уравнение состояния идеального газа

    получим:

    16) Отсюда следует вывод: скорость фильтрации газа зависит от координаты, т,к,

    17) Определим массовый расход газа:

    18) Приведенный расход газа:

    19) Коэффициент продуктивности равен:

    20) Вывод»