Учебная работа № /3456. «Контрольная Гидравлика. Задачи 2, 9, 10, 14

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Количество страниц учебной работы: 8

Учебная работа № /3456. «Контрольная Гидравлика. Задачи 2, 9, 10, 14


Содержание:
«Задача 2.
Найти уровень h0 жидкости в баке (рис.1) при атмосферном давлении ра = 0,1013 МПа при заданных величинах плотности жидкости в баке ρ0, плотности жидкости в дифманометре ρ, уровней в дифманометре h1 и h2 и абсолютного давления р под крышкой бака.
Дано: ра = 0,1013 МПа, ρ0 = 800 кг/м3, ρ = 13600 кг/м3, h1 = 0,3 м, h2 = 3 м, р = 0,2313 МПа
h0 = ?
Задача 9.
В закрытый резервуар (рис.8) подведены металлические трубки диаметром d, соединенные эластичной резиновой вставкой. При начальном давлении р диаметр вставки равен d. По трубке движется вода с раcходом Q. Определить диаметр резиновой вставки d1 при увеличении давления в резервуаре на ∆р.

Дано: d = 0,030 м, Q = 2,0∙10-2 м3/с, ∆р = 0,10 МПа
d1 = ?
№ 10
На сколько изменится коэффициент гидравлического трения λ круглого трубопровода, если в процессе эксплуатации абсолютная шероховатость увеличится от 10-5 м до ∆? Диаметр трубопровода d, средняя скорость течения воды ʋ, ее температура t.
Дано: ∆ = 2 ∙ 10-4 м, d = 0,30 м, ʋ = 3 м/с, t = 30 ̊С
∆λ = ?
Задача 14
Чему должно быть равно избыточное давление в гидрофоре забортной воды (t = 20 ̊С, ν = 10-6 м2/с, ρ = 1016 кг/м3) при расходе Q (рис.11). Трубопровод гидравлически гладкий, диаметром d, длиной L. Коэффициент местной потери напора в клапане ξкл, потери на вход в трубу ξвх = 0,06. Высота уровня в гидрофоре Н. Потерей напора по длине в гидрофоре пренебречь.

Дано: Q = 5∙10-3 м3/с, d = 0,15 м, L = 15 м, ξкл = 3, ξвх = 0,06, Н = 2,5 м, t = 20 ̊С, ν = 10-6 м2/с, ρ = 1016 кг/м3, ра = 105 Па.
ризб = ?
»

Стоимость данной учебной работы: 585 руб.Учебная работа № /3456.  "Контрольная Гидравлика. Задачи 2, 9, 10, 14
Форма заказа готовой работы

    Форма для заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    М

    Хабаровск 2015

    Задача №1: Расчет характеристик установившегося прямолинейно-параллельного фильтрационного потока несжимаемой жидкости,

    Задание:

    — Вывести формулу дебита галереи скважин при установившейся фильтрации несжимаемой жидкости и выполнить расчеты при имеющихся данных

    Дано:

    , МПа

    , МПа

    L, км

    B, м

    h, м

    , мПа*с

    , кг/м?

    k, мкм?

    15

    9,5

    7,0

    8,5

    140,0

    7,0

    2,5

    925

    0,5

    Решение:

    1) Горизонтальный пласт с непроницаемой кровлей и подошвой представляется прямоугольником с высотой h и шириной В,

    Выберем систему координат: начальную координату поместим на площадь контура питания, Название «контур питания» обусловлено тем, что, согласно постановке задачи через плоскость х=O происходит приток в пласт жидкости, которая далее фильтруется к галерее х=L, Ось Ох направим параллельно вектору скорости фильтрации, Давление и скорость фильтрации зависят только от координаты х,

    2) Математическая модель одномерной фильтрации:

    Даны граничные условия, т,е, значения давления на контуре питания и галерее:

    при x =0;

    при x =L=8,5 км;

    3) Решение уравнений

    4) Умножив скорость фильтрации на площадь галереи S=Bh, получим:

    ;

    5) Вычислим дебит галереи:

    6) Зависимость дебита Q от депрессии ?p:

    где депрессия на пласт:

    7) Коэффициент продуктивности пласта:

    Задача №2: Расчет характеристик установившегося плоскорадиального потока несжимаемой жидкости,

    давление жидкость продуктивность фильтрационный

    Задание:

    — Вывести формулу дебита скважины, построить индикаторную линию при установившейся плоскорадиальной фильтрации несжимаемой жидкости,

    — Определить средневзвешенное пластовое давление, построить депрессионную кривую давления,

    — Определить, не нарушается ли закон Дарси в призабойной зоне скважины,

    — Выполнить расчеты при и��еющихся данных,

    Дано:

    ,

    МПа

    ,

    МПа

    ,

    м

    ,

    м

    h,

    м

    ,

    мПа*с

    ,

    кг/м?

    k,

    мкм?

    m/100

    15

    9,5

    7,0

    2000

    0,2

    5

    2,5

    925

    0,3

    0,25

    Решение:

    1) Рассматривается плоскорадиальная фильтрация несжимаемой жидкости к совершенной скважине в горизонтальном круговом пласте толщиной h и радиуса ,

    Центральная скважина имеет радиус , на забое скважины поддерживается постоянное давление , На боковой поверхности поддерживается давление , и через нее происходит приток флюида, равный дебиту скважины,

    2) Установившаяся фильтрация описывается уравнением Лапласа в цилиндрической системе координат:

    Согласно принятой схеме течения, искомые функции не зависит от ? и от z,

    3) Фильтрация описывается системой уравнений:

    p==9,5 МПа при =2000м

    p==7,0 МПа при

    4) Решение системы уравнений имеет вид

    5) Дебит скважины

    6) Подставим скорость фильтрации:

    7) Получим выражение для дебита скважины, называемое формулой Дюпюи:

    8) C помощью формулы Дюпюи распределение давления в пласте преобразуем к виду:

    9) Средневзвешенное пластовое давление:

    10)

    11) Подставим зависимость давления и проинтегрируем от до , получим:

    12) Зависимость распределения давления:

    13) Зависимость для построения индикаторной линии:

    14) Вычислим скорость фильтрации в призабойной зоне:

    15) Определим число Рейнольдса по формуле Щелкачева:

    Критические значения числа Рейнольдса лежат в интервале 0,0080-14, Итак, мы убедились, что закон Дарси не нарушается,

    Задача №3: Расчет характеристик установившегося прямолинейно-параллельного фильтрационного потока совершенного газа,

    Задание:

    — Получить формулу и построить графическое распределение давления и вычислить приведенный расход галереи скважин,

    — Определить коэффициент продуктивности,

    Дано:

    ,

    МПа

    ,

    МПа

    L,

    км

    B,

    м

    h,

    м

    ,

    мПа*с

    k,

    мкм?

    15

    9,5

    7,0

    8,5

    140

    7

    0,014

    0,5

    Решение:

    1) В реальных условиях, когда плотность, вязкость флюида и проницаемость пласта зависят от давления, функция Лейбензона:

    2) При постоянных значениях проницаемости пласта и вязкости жидкости функция Лейбензона:

    3) Дифференциал функции Лейбензона:

    4) Уравнение движения для прямолинейно-параллельной фильтрации несжимаемой жидкости в однородной среде:

    5) Умножим уравнение на плотность ?(p) и используем функцию Лейбензона, Получим:

    6) Уравнение неразрывности для установившейся одномерной фильтрации имеет вид:

    7) Подставляя ,получим:

    8) Таким образом, при установившейся фильтрации функция Лейбензона удовлетворяет уравнению Лапласа, Формулы, полученные для установившейся фильтрации несжимаемой жидкости по закону Дарси, справедливы и для установившейся фильтрации газа, Нужно лишь заменить соответствующие переменные:

    · объемный расход — на массовый расход;

    · давление — на функцию Лейбензона;

    · объемную скорость фильтрации — на массовую скорость фильтрации,

    9) Уравнение состояния идеального газа

    10) Получим функцию Лейбензона для идеального газа:

    11) Распределение давления в прямолинейно-параллельном фильтрационном потоке несжимаемой жидкости является решением уравнения Лапласа:

    12) Подставив

    13) Получим распределение давления в прямолинейно-параллельном потоке идеального газа:

    14) При фильтрации газа вместо скорости фильтрации для несжимаемой жидкости:

    определяют массовую скорость фильтрации газа, заменяя давление pна функцию Лейбензона P, т,е,

    или для идеального газа:

    15) Используя уравнение состояния идеального газа

    получим:

    16) Отсюда следует вывод: скорость фильтрации газа зависит от координаты, т,к,

    17) Определим массовый расход газа:

    18) Приведенный расход газа:

    19) Коэффициент продуктивности равен:

    20) Вывод»