Учебная работа № /2414. «Контрольная Расчет стержней постоянного поперечного сечения при растяжении-сжатии, вариант 8

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Количество страниц учебной работы: 5

Учебная работа № /2414. «Контрольная Расчет стержней постоянного поперечного сечения при растяжении-сжатии, вариант 8


Содержание:
«Вариант 8
1. Расчет стержней постоянного поперечного сечения при растяжении-сжатии
2. Расчет болтов клеммового соединения
3. Валы и оси: применение, классификация, элементы конструкции, материалы
»

Стоимость данной учебной работы: 585 руб.Учебная работа № /2414.  "Контрольная Расчет стержней постоянного поперечного сечения при растяжении-сжатии, вариант 8
Форма заказа готовой работы

    Форма для заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Подобрать величину площади поперечных сечений всех участков бруса из условия прочности по нормальным напряжениям, используя следующие числовые значения:
    Р1 = 50 кН; q1 = 30 кН/м; а = 1м; [ур] = 160 МПа; [ус] = 80 МПа; Е =1,8×105 МПа; F1 = F; F2 = 3F; F3 = 2F.

    Рисунок 2 — расчетная схема к задаче №2.

    Решение:
    ,В соответствии с расчётной схемой (рис,2) аналитические зависимости для внутреннего продольного усилия N будут иметь следующий вид:
    ;

    .
    2,Эпюру нормальных напряжений s получим, разделив значения продольной силы N на соответствующие площади поперечных сечений бруса,Знак продольной силы N определяет и знак соответствующего нормального напряжения s.

    ,
    подставляя 2 крайних значения х2 получим:

    .

    Из условия прочности по нормальным наибольшим напряжениям растяжения и сжатия определим параметр F, а затем площади поперечных сечений каждого участка бруса.
    Из условия прочности по растягивающим нормальным напряжениям находим:

    , отсюда .

    //