2218.Учебная работа .Тема:Многофункциональное арифметикологическое устройство

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (5 оценок, среднее: 4,80 из 5)
Загрузка...

Тема:Многофункциональное арифметикологическое устройство»,»

СОДЕРЖАНИЕ

Введение. 3

1 Обзор арифметикологических устройств. 4

2 Построение структурной схемы.. 8

3 Выбор элементной базы.. 11

4 Построение принципиальной схемы.. 20

5 Расчетная часть. 22

5.1 Расчет потребляемой мощности. 22

5.2 Расчет быстродействия. 23

5.3 Расчет надежности. 24

5.4 Логический расчет. 25

6 Технологическая часть. 27

6.1 Технология изготовления печатных плат. 27

6.2 Механическая обработка печатных плат. 28

6.3 Получение рисунка печатной платы.. 29

6.4 Химические и гальванические процессы изготовления печатных плат. 29

6.5 Получение печатных проводников. 30

7 Конструкторская часть. 31

8 Техника безопасности и экология. 33

8.1 Техника безопасности. 33

8.2 Экология. 34

9 Заключение. 36

10 Список литературы.. 37


Введение

Последние достижения в области информационных техно­логий привели к новым концепциям в организации производства. Ни одна фирма не может обойтись в своей ра­боте без применения компьюте­ров. ЭВМ прочно входят в нашу производственную деятельность, и в настоящее время нет необходимости доказывать целесообраз­ность использования вычислительной техники в системах управле­ния технологическими процессами, проектирования, научных ис­следований, административного управления, в учебном про­цессе, банковских расчетах, здравоохранении, сфере обслужи­вания и т.д.

Любая форма человеческой деятельности, любой процесс функционирования технического объекта связаны с передачей и преобразованием информации. В силу универсальности цифровой формы представления информации, цифровые электронные вычислительные машины представляют собой наиболее универсальный тип устройства обработки информации.

Замечательные свойства ЭВМ – автоматизация вычислительного процесса на основе программного управления, огромная скорость выполнения арифметических и логических операций, возможность хранения большого количества различных данных, возможность решения широкого круга математических задач и задач обработки данных – делают эти машины мощным средством научнотехнического прогресса.

Особое значение ЭВМ состоит в том, что впервые с их появлением человек получил орудие для автоматизации процессов обработки информации. Во многих случаях ЭВМ позволяют существенно повысить эффективность умственного труда. Внедрение ЭВМ оказало большое влияние на многие области науки и техники, вызвало процесс из математизации и компьютеризации.

Упрощенная структура ЭВМ содержит следующие основные устройства: арифметическологическое устройство, память, управляющее устройство, устройство ввода данных в машину, устройство вывода из нее результатов расчета и пульт ручного управления.

В данном курсовом проекте я буду рассматривать работу многофункционального арифметическологического устройства (АЛУ). АЛУ служат для выполнения арифметических и логических преобразований над словами, называемыми в этом случае операндами.

1 Обзор арифметикологических устройств

Выполняемые в АЛУ операции можно разделить на следующие группы:

· Операции двоичной арифметики для чисел с фиксированной точкой;

· Операции двоичной арифметики для чисел с плавающей точкой;

· Операции десятичной арифметики;

· Операции индексной арифметики;

· Операции специальной арифметики;

· Операции над логическими кодами;

· Операции над алфавитноцифровыми полями.

К арифметически операциям относятся сложение, вычитание, вычитание модулей («короткие операции»), умножение и деление («длинные операции»). Группу логических операций составляют операции дизъюнкции (логическое ИЛИ) и конъюнкция (логическое И) над многоразрядными двоичными словами, сравнение кодов на равенство. Специальные арифметические операции включают в себя нормализацию, арифметический сдвиг (сдвигаются только цифровые разряды, знаковый разряд остается на месте), логический сдвиг (знаковый разряд сдвигается вместе с цифровыми разрядами). Обширна группа операций редактирования алфавитноцифровой информации.

Можно привести следующую классификацию АЛУ, которая приведена на рисунке 1.1.

По характеру использования элементов и узлов АЛУ делятся на блочные и многофункциональные. В блочном АЛУ операции над числами с фиксированной и плавающей точкой, десятичными числами и алфавитноцифровыми полями выполняются в отдельных блоках, при этом повышается скорость работы, так как блоки параллельно могут выполнять соответствующие операции, но значительно увеличиваются затраты на оборудование. В многофункциональных АЛУ операции для всех форм представления чисел выполняются одними и теми же схемами, которые коммутируются нужным образом в зависимости от требуемого режима работы. По своим функциям АЛУ является операционным блоком, выполняющим микрооперации, обеспечивающие прием из других устройств (например, памяти) операндов, их преобразования и выдачу результатов преобразования в другие устройства. Арифметическологическое устройство управляется управляющим блоком, генерирующим управляющие сигналы, инициирующие

выполнение в АЛУ определенных микроопераций. Генерируемая управляющим блоком последовательность сигналов определяется кодом операции команды и оповещающими сигналами.


Рисунок 1.1 – Классификация АЛУ.

Обобщенная структурная схема АЛУ процессоров всех моделей может быть изображена в виде, приведенном на рисунке 1.2. В основном она содержит четыре главные составляющие:

группу регистров Р, предназначенных для приема и размеще­ния надлежащим образом операндов, над которыми должны производиться действия при выполнении очередной операции;

операционную часть О, где осуществляются преобразования операндов согласно машинным алгоритмам арифметических, логи­ческих и других операций, на выполнение которых рассчитано АЛУ;

схемы контроля К, обеспечивающие непрерывный оперативный контроль работы АЛУ, а при обнаружении систематических сигналов ошибок — его диагностику с разрешающей способно­стью, соответствующей возможностям системы контроля, приме­няемой в модели ЭВМ;

схемы управления У, где вырабатываются управляющие сигна­лы УС, координирующие взаимодействие всех блоков АЛУ между собой и с другими блоками процессора, тем самым обеспечивая выполнение требуемых последовательностей микроопераций, соот­ветствующих исполняемым операциям.

Рисунок 1.2 Обобщенная структурная схема АЛУ процессоров.

В моделях осуществляется гибкое управление выполнением операций. Последовательность действий по исполнению каждой команды зависит от особенностей операндов и получающихся про­межуточных и окончательных результатов их преобразования. Для этого в операционной части АЛУ на разных этапах выполне­ния операций производится анализ преобразуемой информации. Результаты его в виде ответных сигналовпризнаков СП поступают на схемы управления.

На основе анализа получающихся результатов в конце исполне­ния определенных команд схемы управления формируют признак результата ПР, который в виде двухразрядного кода условия заносится в слово состояния программы ССП.

Переход к управле­нию исполнением каждой очередной команды строится по асинх­ронному принципу. При наличии в процессоре командной и пре­образуемой

информации действия в АЛУ по выполнению следую­щей операции могут начинаться сразу после завершения предыду­щей операции. Для этого в схемах управления АЛУ формируется сигнал конца операции СКО. Управление выполнением следующей операции начинается по сигналу начала операции СНО, выраба­тываемому в схемах центрального управления процессора.

В регистры Р операнды для очередной операции выбираются либо из местной оперативной памяти (регистров общего назначе­ния РОН или регистров для операндов с плавающей запятой РПЗ), либо из основной оперативной памяти ООП. Результаты операций из регистров АЛУ отсылаются также в РОН, РПЗ или ООП.

2 Построение структурной схемы


Рисунок 2 – Многофункциональное АЛУ.

Проектирование АЛУ включает в себя выбор кодов для представления данных, определение алгоритмов выполнения от­дельных операций, структур операционных блоков и реализуе­мых в них наборов микроопераций. Затем производят объедине­ние отдельных операционных блоков и соответствующих наборов микроопераций в один многофункциональный операционный блок или несколько блоков для отдельных групп операций. В многофункциональных АЛУ операции над числами с фиксиро­ванной и плавающей точками, десятичными числами и алфавит­ноцифровыми полями выполняются в основном одними и теми же схемами, коммутируемыми соответствующим образом. На рисунке 2 приведена схема многофункционального АЛУ для вы­полнения совокупности арифметических и логических операций. Регистровая часть АЛУ, в которой размещаются операнды или результаты действий над ними, в основном состоит из 8разрядных

регистров Рг1, Рг2, Рг21, Рг3, РгА, РгВ, РгСм и 4разрядных — PгC, PгD, PгСч1. Кроме этого, имеется еще ряд малоразрядных регистров и множество триггеров, не показанных на рисунке. Они предназначаются для запоминания различных кодов, сигналов, отражающих различные состояния, условия, результаты анализа преобразуемой информации, необходимые для правильного выполнения арифметических, логических и др. операций. Эти регистры и триггеры можно отнести к операционной части АЛУ, основу которой составляют сумматор См, схема СОЛО, сумматор для выполнения операций двоичнодесятичной арифметики СмДес.

При сложении чисел с фиксированной точкой в рассматриваемой схеме загрузка РгВ происходит от Рг2 ввиду того, что связь от ШИВх к Рг2 и далее к РгВ должна существовать изза необходимости реализации умножения. Сумма частичных произведений за­носится в РгВ не непосредственно из РгСм, а через РгЗ, так как загрузка РгЗ необходима при выполнении сложения чисел с пла­вающей точкой и т. п.

Операции двоичнодесятичной арифметики в данном АЛУ производятся при помощи двоичнодесятичного сумматора СмДес и побайтной организации обработки.

При выполнении операций над числами с плавающей точкой используются двоичный сумматор См и схема СОЛО. При сло­жении (вычитании) чисел с плавающей точкой первое слагаемое (уменьшаемое) поступает на входной регистр Рг1, второе (вы­читаемое) — на входной регистр РгЗ. Знаки слагаемых хранятся в триггерах знаков ТгЗн1 и ТгЗн2. Смещенные порядки слагае­мых пересылаются в регистры РгС и РгД. Схема СОЛО при­меняется для сравнения и выравнивания порядков слагаемых. Сумматор См, его входные регистры РгА и РгВ и выходной регистр РгСм используются при сложении (вычитании) мантисс, а также при передаче мантисс со сдвигом в процедурах вы­равнивания порядков и нормализации результата.

Выравнивание порядков производится следующим образом. Смещенный порядок числа X из РгЗ передается в регистр РгД и в выполняющий роль РгСОЛО

счетчик РгСч, соединенный с выходом СОЛО. Затем в РгС передается смещенный порядок числа У. После этого начинается сравнение порядков чисел X и У на СОЛО и сдвиг мантиссы числа с меньшим порядком вправо, при этом значение смещенного порядка У меняется до тех пор, пока он не станет равным

смещенному порядку X. Порядок Z берется равным большему порядку слагаемых.

Чтобы не делать лишних сдвигов мантиссы, превратившейся в процессе выравнивания порядка в 0, на счетчике циклов СчЦ фиксируется предельное число сдвигов, равное числу цифр ман­тиссы. При выполнении сдвига на один разряд мантиссы содержимое СчЦ уменьшается на 1. При СчЦ = 0 сдвиги прекращаются и в качестве результата берется большее слагаемое. После выравнивания порядков осуществляется сложение мантисс и (при необходимости) нормализация результата.

При умножении чисел с плавающей точкой используются сумматор См, регистр Рг1 для хранения множимого, регистры Рг2 и Рг2′ для приема и сдвига множителя в процессе умножения мантисс, регистр РгА, используемый для передачи на сумматор смещенного порядка множимого при суммировании порядков и для передачи на сумматор мантиссы множимого при умножении мантисс, регистр РгВ, служащий для передачи на сумматор смещенного порядка множителя при суммировании порядков и для хранения текущей суммы частичных произведе­ний при умножении мантисс, выходной регистр сумматора РгСм, фиксирующий результаты суммирований, счетчик РгСч1, храня­щий смещенный порядок произведения, триггеры знаков сомно­жителей ТгЗн1 и ТгЗн2.

При выполнении деления чисел с плавающей точкой используются сумматор См, регистры Рг1 и Рг2 для приема соответственно делителя и делимого, регистры РгА и РгВ для хранения смещенных порядков делителя и делимого и для хранения ман­тиссы делителя и частичного остатка при получении мантиссы частного, счетчик Сч1 для хранения смешенного порядка частного, регистры Рг2 и Рг21 для хранения цифровых разрядов ман­тиссы частного, триггеры знаков делимого и делителя ТгЗн1 и ТгЗн2. Рассмотренное АЛУ можно считать типичным для ЭВМ общего назначения средней производительности.

3 Выбор элементной базы

Для того чтобы построить принципиальную схему нужно выбрать элементную базу и технологию производства интегральных микросхем (ИМС).

На данный момент есть несколько технологий производ­ства интегральных микросхем: Транзисторнотранзисторная ло­гика (ТТЛ) и транзисторнотранзисторная логика с диодом Шоттки (ТТЛШ), МОП транзисторная логика (МОПТЛ), эмиттерносвязанная логика (ЭСЛ), интегральная инжекци­онная логика (И2 Л). Каждая из технологий имеет свои досто­инства и недостатки, которые рассмат­риваются ниже.

Транзисторнотранзисторная логика (ТТЛ) и транзи­сторнотранзисторная логика с диодом Шоттки (ТТЛШ).

Достоинства: высокое быстродейст­вие, обширная номенклатура, хорошая помехоустойчивость.

Недостатки: мик­росхемы обладают большой потребляемой мощностью.

МОП транзисторная логика (МОПТЛ).

МОП (МДП) – металлокисел (диэлектрик) полупроводник.

Достоинства: большая помехоустойчивость, т.к. высокий логический пере­пад; высокая нагрузочная способность, т.к. схема имеет боль­шое выходное сопротивление (Rвых); высокая степень интеграции, т.к. нет изолирующих кана­лов.

Недостаток: низкое быстродействие, т.к. Cн заряжается через боль­шое сопротивление.

МОП транзисторная логика на комплиментарных клю­чах (КМОПТЛ)

Достоинства: выше быстродействие, т.к. Сн заряжается через откры­тый транзистор; КМОП схема характеризуется весьма малым потребляемым то­ком (а, следовательно, и мощности) от источника пи­тания; меньше напряжение питания (Uпит).

Недостаток: быстродействие меньше, чем у ЭСЛ, но по мере развития технологий этот недостаток устраняется.

Эмиттерносвязанная логика (ЭСЛ)

Достоинства: высокое быстродействие; применение на выходах эмиттерных повторителей обеспе­чи­вает ускорение процесса перезарядки ёмкостей, подключён­ных к выходам; транзисторы включены по схеме, близкой к схеме включе­ния с общей базой, что улучшает частотные ха­рактеристики транзисторов и ускоряет процесс их пе­реключения; на выходах стоят эмиттерные повторители и, следова­тельно, увеличивается нагрузочная способность; широкие логические возможности, т.к. схема имеет два вы­хода.

Недостатки: большая потребляемая мощность, т.к. в схеме переключа­ются большие токи; сравнительно низкая помехоустойчивость элемента, т.к. вы­бран малый перепад логических уровней U1 – U0 = 0,8.

Интегральная инжекционная логика (И2 Л).

Достоинства: используется пониженное напряжение (»1 В); малая потребляемая мощность, т.к. в схеме протекает ток мкА, а Uпит =1 В; обеспечивают высокую степень интеграции (нет изоляци­он­ных карманов); при изготовлении схем И2 Л используется те же техноло­гиче­ские процессы, что и при производстве ин­тегральных схем на биполярных транзисторах, но ока­зывается меньшим число технологических операций и необходимых фотошабло­нов; обеспечивают возможность обмена в широких пределах мощно­сти на быстродействие (можно изменять на не­сколько порядков потребляемую мощность, что соответ­ственно при­ведёт к изменению быстродействия); хорошо согласуются с элементами ТТЛ.

Недостатки: не большая помехоустойчивость, т.к. логический пере­пад 0,5¸0,8 В; быстродействие ниже, чем в схемах ЭСЛ.

В данном курсовом проекте выбраны ИМС ТТЛ и ТТЛШ – технологии серии К155 и К555, т.к. они лучше всего подходят по основным параметрам (потребляемая мощность, быстродействие, нагрузочная способность) для данной схемы.

Для курсового проектирования выбраны следующие интегральные микросхемы:

К155ИМ3, КМ155ИМ3

Микросхема представляет собой четырехразрядный (двоичный) полный сумматор. Содержит 781 интегральный элемент. Корпус типа 238.162, масса не более 2 г. и типа 201.166, масса не более 2,5 г (рисунок 3.1).


Рисунок 3.1 Условное графическое обозначение К155ИМ3, КМ155ИМ3.

Назначение выводов: 1вход слагаемого А4; 2выход суммы S3; 3вход слагаемого А3; 4вход слагаемого В3; 5напряжение питания; 6выход суммы S2; 7вход слагаемого В2; 8вход слагаемого А2; 9выход суммы S1; 10вход слагаемого А1; 11вход слагаемого В1; 12общий; 13вход переноса Р0; 14выход переноса четвертого разряда Р4; 15выход суммы S4; 16вход слагаемого В4.

К155ИР13

Микросхема представляет собой восьмиразрядный реверсивный сдвиговой регистр. Содержит 385 интегральных элементов. Корпус типа 239.241, масса не более 4 г (рисунок 3.2).

Рисунок 3.2 – Условное графическое обозначение К155ИР13.

Назначение выводов: 1 вход режимный S0; 2вход последовательного ввода информации при сдвиге вправо DR; 3вход информационный D0; 4выход Q0; 5вход D1; 6выход Q1; 7вход D2; 8выход Q2; 9вход D3; 10выход Q3; 11вход

синхронизации С; 12общий; 13вход инверсный «сброс» R; 14выход Q4; 15вход D4; 16выход Q5; 17вход D5; 18выход Q6; 19вход D6; 20выход Q7; 21вход D7; 22вход последовательного ввода информации при сдвиге влево DL; 23вход режимный S1; 24напряжение питания.

К555КП13

Микросхема представляет собой четыре двухвходовых мультиплексора с запоминанием. Содержит 120 интегральных элементов. Корпус типа 238.162, масса не более 1,2 г (рисунок 3.3).

Рисунок 3.3 – Условное графическое обозначение К555КП13.

Назначение выводов: 1вход В1; 2вход В0; 3вход А0; 4вход А1; 5вход В2; 6вход В3; 7вход А3; 8общий; 9вход А2; 10вход выбора канала V; 11вход синхронизации ; 12,13,14,15 выходы Q3,Q2,Q1,Q0; 16напряжение питания.

К155ИР1, КМ155ИР1

Микросхемы представляют собой четырехразрядный универ­сальный сдвиговый регистр. Содержат 177 интегральных элемен­тов. Корпус типа 201.141 масса не более 1 г и типа 201.148, масса не более 2,2 г (рисунок 3.4).


Рисунок 3.4 Условное графическое обозначение К155ИР1.

Назначение выводов: 1 — вход информационный V1 ; 2 — вход первого разряда D1; 3 — вход второго разряда D2; 4 — вход третьего разряда D3; 5 — вход четвертого разряда D4; 6 — вход выбора режима V2; 7 — общий; 8 — вход синхронизации С2; 9 — вход синхронизации С2, 10 — выход четвертого разряда; 11 — выход третьего разряда; 12 — выход второго разряда; 13 — вы­ход первого разряда; 14 — напряжение питания.

К155ТМ2, КМ155ТМ2

Микросхема представляет собой два Dтриггера. Содержат 70 интегральных элементов. Корпус типа 201.141, масса не более 1 г и типа 201.148, масса не более 2,2 г (рисунок 3.5).

Рисунок 3.5 – Условное графическое обозначение К155ТМ2, КМ155ТМ2.

Назначение выводов: 1инверсный вход установки «0» R1; 2вход D1; 3вход синхронизации С1; 4инверсный вход установки «1» S1; 5выход Q1;6инверсный выход Q1; 7общий; 8инверсный выход Q2; 9выход Q2; 10 инверсный вход установки «1» S2; 11вход синхронизации С2; 12вход D2; 13 инверсный вход установки «0» R2; 14напряжение питания.

К555СП1

Микросхема представляет собой схему сравнения двух четырехразрядных чисел. Содержит 208 интегральных элементов. Корпус типа 238.162, масса не более 1,2 г (рисунок 3.6).

Рисунок 3.6 – Условное графическое обозначение К555СП1.

Назначение выводов: 1вход В3; 2вход переноса A<B; 3вход переноса А=В; 4вход переноса A>B; 5выход А>В; 6выход А=В; 7выход А<В; 8общий; 9вход

В0; 10вход А0; 11вход В1; 12вход А1; 13вход А2; 14вход В2; 15вход А3; 16напряжение питания.

К155ЛЛ1, КМ155ЛЛ1

Микросхема представляет собой 4 двухвходовых логических элемента ИЛИ. Содержит 84 интегральных элемента. Корпус типа 201.141, масса не более 1 г и типа 201.148, масса не более 2,2 г (рисунок 3.7).

Рисунок 3.7 – Условное графическое обозначение К155ЛЛ1, КМ155ЛЛ1.

Назначение выводов: 1,2,4,5,9,10,12,13 – входы; 3,6,8,11выходы;7общий; 14напряжение питания.

К555ЛН1, КБ555ЛН14, КМ555ЛН1

Микросхемы представляют собой 6 логических элементов НЕ. Содержат 84 интегральных элемента. Корпус типа 201.141, масса не более 1 г и 201.148, 2012.142, масса не более 2,3 г (рисунок 3.8).

Рисунок 3.8 – Условное графическое обозначение К555ЛН1.

Назначение выводов: 1вход Х1; 2выход Y1; 3вход Х2; 4выход Y2; 5вход Х3; 6выход Y3; 7общий; 8выход Y4; 9вход Х4; 10выход Y5; 11вход Х5; 12выход Y6; 13вход Х6; 14напряжение питания.

К555ЛИ1, КБ555ЛИ14, КМ555ЛИ1

Микросхемы представляют собой четыре логических элемента 2И. Содержат 80 интегральных элементов. Корпус типа 201.141, масса не более 1 г и 201.148, 2102.142, масса не более 2,3 г (рисунок 3.9).

Рисунок 3.9 – Условное графическое обозначение К555ЛИ1.

Назначение выводов: 1вход Х1; 2вход Х2; 3выход Y1; 4вход Х3; 5вход Х4; 6выход Y2; 7общий; 8выход Y3; 9вход Х5; 10вход Х6; 11выход Y4; 12вход Х7; 13вход Х8; 14напряжение питания.

КР1533КП7, КФ1533КП7, ЭКФ1533КП7

Микросхемы представляют собой селектормультиплексор на 8 каналов со стробированием. В зависимости от установленного на выводах 9..11 кода разрешают прохождение сигнала на выходы только от одного из 8 информационных входов. Содержат 195 интегральных элементов. Корпус типа 238.161, масса не

более 1,2 г (рисунок 3.10).


Рисунок 3.10 – Условное графическое обозначение КР1533КП7.

Назначение выводов: 1вход информационный D3; 2 вход информационный D2; 3 вход информационный D1; 4 вход информационный D0; 5выход Y; 6выход Y; 7вход стробирования; 8общий; 9вход «выбор данных» SED3; 10 вход «выбор данных» SED2; 11 вход «выбор данных» SED1; 12 вход информационный D7; 13 вход информационный D6; 14 вход информационный D5; 15 вход информационный D4; 16напряжение питания.

Таблица 3.1 – Электрические параметры микросхем.

Параметры

К155ИМ3

К155ИР13

К155ИР1

К555КП13

К155ТМ2

I0вх, мА

6,4

1,6

3,2

0,38

1,6

I1вх, мА

0,16

0,04

0,04

0,003

0,04

U0вых, В

0,4

0,4

0,4

0,4

0,4

U1вых, В

2,4

2,4

2,4

2,8

2,4

I0пот, мА

128

116

82

20,5

30

I1пот, мА

128

116

82

20,5

30

t0,1здр, нс

48

30

35

32

40

t1,0здр, нс

32

30

35

27

25

Рпотр., мВт

670

609

430

107,6

157,5

Таблица 3.2 – Электрические параметры микросхем.

Параметры

К555СП1

К155ЛЛ1

К555ЛН1

К555ЛИ1

КР1533КП7

I0вх, мА

0,4

1,6

0,36

0,36

0,2

I1вх, мА

0,02

0,04

0,02

0,02

0,002

U0вых, В

0,5

0,4

0,5

0,5

0,4

U1вых, В

2,4

2,4

2,7

2,7

2,4

I0пот, мА

20

38

6,6

8,8

10

I1пот, мА

20

22

2,4

4,4

10

t0,1здр, нс

39

22

20

24

34

t1,0здр, нс

36

15

20

24

32

Рпотр., мВт

104,4

157,6

23,63

34,65

50

4 Построение принципиальной схемы

Схема электрическая принципиальная многофункционального арифметикологического устройства представлена на графическом чертеже Э3. Подробное описание функционирования данной схемы изложено в пункте 2.

В данном разделе рассмотрим сложение и вычитание чисел с плавающей точкой. Для выполнения данной операции используются двоичный четырехразрядный сумматор СМ (серии К155ИМ3) и схема однобайтовых логических операций СОЛО. При сложении (вычитании) чисел с плавающей точкой из оперативной памяти по входной информационной шине ШИВх в АЛУ поступают операнды. Первое слагаемое (уменьшаемое) поступает на входной восьмиразрядный регистр Рг1 (серия К155ИР13), второе слагаемое (вычитаемое) на входной восьмиразрядный регистр Рг3 той же серии. Знаки слагаемых хранятся в триггерах знаков (Dтриггерах К155ТМ2) ТгЗн1 и ТгЗн2. Смещенные порядки слагаемых пересылаются в четырехразрядные регистры РгС и РгD (оба серии К155ИР1). Схема СОЛО применяется для сравнения и выравнивания порядков слагаемых. Данная схема является комбинационной, она позволяет реализовать поразрядные операции логического умножения И, логического сложения ИЛИ и суммирования по модулю два двумя однобайтовыми операндами. Четырехразрядная схема однобайтовых логических операций состоит из четырех схем поразрядной обработки СПО и схем сравнения слов длиной 1 байт. На Вых1 и Вых2 СОЛО формируются сигналы, определяющие результат сравнения байт по численному значению в соответствии со следующим правилом (таблица 4.1):

Таблица 4.1.

Вых1

Вых2

Результат сравнения

1

1

D<C

0

1

D>C

0

0

D=C

Сумматор СМ, его входные восьмиразрядные регистры РгА и РгВ (обе ИМС серии К155ИР13) и выходной восьмиразрядный регистр РгСМ используются при сложении (вычитании) мантисс, а также при передаче мантисс со сдвигом в процедурах выравнивания порядков и нормализации результата.

Выравнивание порядков производится следующим образом. Смещенный порядок числа Х из Рг3 передается в регистр РгD и в выполняющий роль РгСОЛО счетчик РгСч1, соединенный с выходом СОЛО. Затем в РгС передается смещенный порядок числа Y. После этого начинается сравнение порядков чисел Х и Y на СОЛО и сдвиг мантиссы числа с меньшим порядком вправо, при этом значение смещенного порядка Y меняется до тех пор, пока он не станет равным смещенному порядку Х. Порядок Z берется равным большему порядку слагаемых. Чтобы не делать лишних сдвигов мантиссы, превратившейся в процессе выравнивания порядка в 0, на счетчике циклов СчЦ фиксируется предельное число сдвигов, равное числу цифр мантиссы. При выполнении сдвига на один разряд мантиссы содержимое СчЦ уменьшается на 1. При СчЦ=0 сдвиги прекращаются, и в качестве результата берется большее слагаемое. После выравнивания порядков осуществляется сложение мантисс и (при необходимости) нормализация результата.С выхода РгСМ данные передаются дальше на шину ШИВых.

5 Расчетная часть

Среди многочисленных характеристик, отражающих производительность, эксплуатационные свойства и особенности конструкции схем, выделяют несколько основных, по которым можно произвести оценку в отношении соответствия требованиям, предъявляемым при разработке схемы. К таким характеристикам относят потребляемую мощность, быстродействие, показатели надежности.

5.1 Расчет потребляемой мощности

Потребляемая мощность Рпот. – значение мощности, потребляемой устройством от источника питания в заданном режиме. Расчет мощности представлен в таблице 5.1.

РN пот = Рпот * N,

где РN пот – мощность потребляемая однотипными элементами, мВт;

Рпот – потребляемая мощность одним элементом, мВт;

N – количество элементов.

Таблица 5.1 – Расчет потребляемой мощности.

Типы элементов

Рпот, мВт

N

РN пот, мВт

К155ИМ3

670

3

2010

К155ИР13

609

7

4263

К555КП13

107,6

11

1183,6

К155ИР1

430

3

1290

К155ТМ2

78,75

2

157,5

К55СП1

104,4

1

104,4

К155ЛЛ1

39,4

2

78,8

К555ЛН1

23,63

4

94,52

К555ЛИ1

34,65

3

103,95

КР1533КП7

50

8

400

Мощность, потребляемая всем устройством:

Рпот общ = Σ РN пот i

где Рпот общ мощность потребляемая всем устройством, мВт;

РN пот i – мощность потребляемая однотипными элементами, мВт;

Рпот общ = 9685,77 мВт =9,7 Вт.

5.2 Расчет быстродействия

Быстродействие характеризуется наибольшей частотой входных сигналов, при которой не нарушается функционирование схемы. Задержка распространения сигнала при переключении микросхемы с высокого уровня на низкий и наоборот используется для характеристики быстродействия. Более общий параметр время задержки микросхемы, определяется по формуле:


где tздр – время задержки, нс;

t1,0 – время задержки при выключении микросхемы, нс;

t0,1 – время задержки при включении микросхемы, нс;

Быстродействие устройства определяется по формуле:

где tздр – время задержки сигнала устройством, нс;

tздр i – время задержки сигнала i элементом, нс;

Таблица 5.2 – Расчет быстродействия.

Типы микросхем

tздр.,нс

К155ИМ3

40

К155ИР13

30

К555КП13

29,5

К155ИР1

35

К155ТМ2

32,5

К55СП1

37,5

К155ЛЛ1

18,5

К555ЛН1

20

К555ЛИ1

24

КР1533КП7

33

tздр. общ.=300 нс.

5.3 Расчет надежности

Свойство изделия в течение определенного времени выполнять заданные функции называется надежностью.

Все свойства объекта, характеризующие его надежность безотказность, долговечность и сохраняемость, имеют количественные характеристики, которые оцениваются соответствующими показателями.

Поскольку отказы являются случайными событиями, количественные характеристики надежности имеют вероятностный характер.

λ(t) показывает, какая часть элементов по отношению к общему количеству исправно работающих элементов в среднем выходит из строя в единицу времени. Данная величина показывает интенсивность отказов. Среднее время безотказной работы Туст – среднее значение наработки изделий до первого отказа. Интенсивность отказов всего устройства вычисляется по формуле. Расчет в таблице 5.3.

λфактпасп* Кн * Кт * Ni

где λфакт – общая интенсивность отказов, ч1;

λпасп – интенсивность отказов микросхем по паспорту, ч1;

Кн – отношение количества используемых ножек элемента к общему количеству ножек;

Кт – температурный коэффициент;

Ni – количество элементов.

λфакт=0,379*106 ч1.

Туст = 1/ λфакт,

где Туст – средняя наработка до отказа, ч;

λфакт – общая интенсивность отказов, ч1.

Туст =2,64*106 ч.

Таблица 5.3 – Расчет надежности.

Типы элементов

λпасп *106

Кн

Кт

Ni

λфакт*106

К155ИМ3

0,1

0,895

0,1

3

0,027

К155ИР13

0,1

0,91

0,1

7

0,064

К555КП13

0,1

1

0,1

11

0,11

К155ИР1

0,1

0,833

0,1

3

0,025

К155ТМ2

0,1

0,5

0,1

2

0,01

К55СП1

0,1

0,71

0,1

1

0,007

К155ЛЛ1

0,1

1

0,1

2

0,02

К555ЛН1

0,1

1

0,1

4

0,04

К555ЛИ1

0,1

1

0,1

3

0,03

КР1533КП7

0,1

0,57

0,1

8

0,046

Вероятность безотказной работы устройства за t часов вычисляется по формуле:

Р=еt*λ,

где Р – вероятность исправной работы;

t – время работы, ч;

λфакт – общая интенсивность отказов, ч1.

Р10000 = e10000*0,379*10=0,96

5.4 Логический расчет

В данном разделе курсового проекта я буду рассматривать логический расчет комбинационных схем ИЛИ, НЕ и 2И. Эти элементы входят в схему СОЛО. Как видно из принципиальной схемы на элемент НЕ подаются поочередно сигналы из РгС и РгD. Часть выходных данных попадает на РгСч1, а часть на схему сравнения. Обозначим fiвыходные сигналы, идущие на РгСч1, fkсигналы, идущие на схему сравнения. Тогда fi(Di,Ci)=(DiCi+ DiCi)+ DiCi; fк(Di,Ci)=(DiCi+ DiCi); Составим таблицу истинности для входов Di и Ci:

Таблица 5.4 – Таблица истинности.


Di

Ci

fi

fк

0

0

0

1

0

1

1

0

1

0

1

0

1

1

1

1

С помощью карты Карно построим схему на элементах Шеффера.


Ci Ci

1

1

1

Di

Di

fi(Di,Ci)=Di +Ci;




Ci Ci

1

1

Di

Di

fк(Di,Ci)=DiCi + DiCi;


Построим комбинационные схемы на элементах Шеффера (рисунок 5.1).


fi(Di,Ci)=Di +Ci=Di Ci; fк(Di,Ci)=DiCi + DiCi= DiCi DiCi;

Рисунок 5.1 – Схема на элементах Шеффера.

6 Технологическая часть

6.1 Технология изготовления печатных плат

Печатной платой называется материал основания, вырезанный по размеру, содержащий необходимые отверстия и, по меньшей мере, один проводящий рисунок.

Основными видами печатных плат являются односторонние печатные платы (ОПП), двусторонние печатные платы (ДПП), многослойные печатные платы (МПП), гибкие печатные платы (ГПП) и гибкие печатные кабели (ГПК).

По плотности печатного монтажа разделяют на два класса: А – пониженной плотности, Б – повышенной плотности.

Двусторонняя печатная плата имеет одно основание, на обеих сторонах которого выполнены проводящие рисунки и все требуемые соединения. Переход токопроводящих линий с одной стороны платы на другую осуществляется металлизированными монтажными отверстиями. С помощью такой платы можно выполнить сложные схемы.

Печатные платы выполняют прямоугольной формы. Основание печатных плат изготавливают из изоляционного материала, который должен хорошо сцепляться с металлом проводников, иметь диэлектрическую проницаемость не более 7 (во избежание возникновения значительных паразитных емкостей между печатными проводниками); обладать достаточно высокой механической и электрической прочностью; допускать возможность обработки резанием и штамповкой; сохранять свои свойства при воздействии климатических факторов, а также в процессе создания рисунка и пайки. Таким требованиям удовлетворяют гетинакс, стеклотекстолит и некоторые другие фольгированные и нефольгированные материалы.

Фольгированные материалы представляют собой слоистые прессованные пластики, пропитанные искусственной смолой и облицованные с одной или двух сторон медной электромеханической фольгой. В процессе изготовления печатной платы его

поверхность металлизируется слоем меди.

В качестве материала для печатных проводников используют медь с содержанием примесей не свыше 0.05%. Этот материал обладает высокой электрической проводимостью, относительно стоек по отношению к коррозии, хотя и требует защитного покрытия.

Соединение печатного проводника с навесными элементами осуществляется контактными площадками круглой, прямоугольной и другой формы.На одной плате нецелесообразно иметь более трех значений разных диаметров отверстий, так как это затрудняет их обработку в связи с необходимостью частой смены инструмента.

6.2 Механическая обработка печатных плат

Основными этапами механической обработки являются входной контроль материала, получение заготовки, сверление монтажных отверстий, обработка по контуру.

Входной контроль фольгированного диэлектрика заключается в проверке размеров листа, состояния поверхности со стороны фольги и диэлектрика, прочности сцепления фольги в исходном состоянии и при воздействии расплавленного припоя, гальванических растворов и других факторов, способности материала к механической обработке, поверхностного сопротивления и некоторых других параметров. При визуальном осмотре листов устанавливается наличие царапин, проколов, пузырей и других повреждений.

Получение заготовки. Заготовку отпускают с припуском по контуру на одну или несколько плат. Резка листа из фольгированного и нефольгированного материала может производиться дисковой фрезой. Для охлаждения применяют сжатый воздух. Сверление монтажных отверстий выполняют в кондукторе спиральным листом из твердого сплава с углом при вершине сверла 122..130 без применения охлаждающей жидкости. Все отверстия, подлежащие металлизации, получают сверлением, так как пробитые отверстия имеют плохое качество поверхности и не пригодны для металлизации.

Обработка по контуру. Окончательный контур платы получают вырубкой или фрезерованием после изготовления печатных проводников. Наружный контур получают отрезкой на гильотинных ножницах или на прецизионной алмазной пиле, вырубкой в штампе или фрезерованием. Вырубка по контуру может совмещаться с пробивкой отверстий, пазов и других элементов платы, не подлежащих металлизации.

6.3 Получение рисунка печатной платы

Основными методами получения защитного рисунка на печатной плате являются фотопечать и трафаретная печать.

Фотопечать представляет собой способ нанесения изображения рисунка печатных проводников на материал основания, покрытый светочувствительным слоем (фоторезистом), экспонируемый через фотошаблон с требуемым изображением. Фотошаблон рисунка печатной платы – негативное или позитивное изображение требуемого рисунка в масштабе 1:1 на стеклянной фотопластинке или пленочном материале, полученное путем фотографирования с оригиналов рисунка печатной платы.

Трафаретная печать (сеткографический метод). Метод основан на получении необходимого рисунка схемы на поверхности медной фольги путем продавливания защитной краски резиновым ракелем через сетчатый трафарет. Сетки для трафаретов изготовляют из капроновых или лавсановых нитей. Более высокая точность рисунка схемы получается при использовании сетки из фосфористой бронзы.

6.4 Химические и гальванические процессы изготовления печатных плат

Основное назначение химических и гальванических процессов заключается в металлизации монтажных отверстий и защите рисунка печатной платы при травлении. Типовой технологический процесс химической и гальванической металлизации печатных плат состоит из этапов подготовки поверхности, сенсибилизации, активизации, химического и гальванического меднений,

гальванического осаждения сплав SnPb.

Подготовка поверхности монтажных отверстий печатных плат заключается в гидроабразивной обработке, подтравливании диэлектрика в отверстиях серной кислотой и фтористым водородом, промывки в проточной воде. Сенсибилизация (повышение чувствительности к меди) осуществляется в растворе двухлористого олова, соляной кислоты и металлического олова в течение 5..7 минут с последующей промывкой в дистиллированной воде.Активизация проводится в водном растворе двухлористого палладия и аммиака в течение 5..7 минут. Металлический палладий служит центром кристаллизации при химическом омеднении. Химическое омеднение состоит в восстановлении меди на активированных поверхностях из раствора, в который входят соли меди, никеля, формалина, соды и другие. Время осаждения слоя меди толщиной 0,25..0,5 мкм составляет 15..20 минут. Гальваническое омеднение требует замкнутого контура проводящих покрытий, которое осуществляется технологическими проводниками, прошивкой отверстий медной проволокой и применение специальных рамок. Медь наращивают в сернокислом, борфтористоводородном и других электролитах.

Гальваническое осаждение сплава «оловосвинец» толщиной 8..20 мкм производится с целью предохранения проводящего рисунка при травлении плат и обеспечение хорошей паяемости.

6.5 Получение печатных проводников

Комбинированный метод заключается в получении печатных проводников химическим методом (то есть травлением фольгированного диэлектрика) и металлизации монтажных или переходных отверстий электрохимическим методом. Комбинированный позитивный метод применяют для изготовления ДПП и ГПП с металлизированными отверстиями на двухстороннем фольгированном диэлектрике. Травление медной фольги с незащищенных участков производят или до металлизации отверстий (негативный процесс), или после нее (позитивный процесс).

7 Конструкторская часть

Применение плат с печатным монтажом повышает надежность аппаратуры, обеспечивает повторяемость ее электрических параметров от образца к образцу, создает предпосылки для автоматизации производства.

По плотности печатного монтажа платы разделяют на два класса: А пониженной плотности, Б повышенной плотности. Печатные платы должны иметь прямоугольную форму (другая конфигурация допускается только при необходимости). Размеры печатных плат следует выбирать по ГОСТ 1031772, в котором рекомендовано 74 типоразмера плат от 10*10 мм до 240*360 мм с отношением сторон от 1:1 до 2:1. Платы всех размеров рекомендуется конструировать по классу А. Плотность монтажа по классу Б при необходимости следует использовать на платах размером не более 120*180 мм.

Рекомендуются следующие толщины плат: 0,8 ± 0,15 мм, 1,0 ± 0,15 мм, 1,5 ± 0,2 мм, 2,0 ± 0,2 мм, 2,5 ± 0,3 мм, 3,0 ± 0,3 мм. Толщину печатной платы определяют на основании требований к прочности конструкции сборочной единицы и с учетом метода изготовления. Для односторонних и двухсторонних плат выбирают материал соответствующей толщины, для многослойных печатных плат (МПП) подбирают толщины материалов печатных слоев и склеивающих прокладок. Суммарная толщина склеивающих прокладок между соседними слоями должна быть не менее двух толщин печатных проводников, расположенных на внутренних слоях.

Плотность тока в печатном проводнике должна быть не более 20 А/мм для односторонних и двухсторонних печатных плат и наружных слоев МПП и не более 15 А/мм для внутренних слоев МПП. Для вычерчивания рисунков печатного монтажа в соответствии с ГОСТ 1031772 используют прямоугольную координатную сетку с шагом 2,5 мм или 1,25 мм. Расстояния между центрами отверстий необходимо выдерживать на платах по классу А с допуском ± 0,2 мм, по классу Б с допуском ± 0,1 мм. Расстояния между краями отверстий должны быть не менее толщины платы. Металлизированные отверстия должны иметь контактные площадки. Рекомендуемая форма контактных площадок круглая или прямоугольная с плавными переходами к проводнику.

Расстояние края любого конструктивного элемента печатной платы (проводника, контактной площадки, отверстия, паза) до края платы должно быть не меньше номинальной толщины платы с учетом допуска.

Печатные проводники рекомендуется выполнять номинальными по ширине на всем их протяжении, сужая их только в узких местах до минимально допустимых значений на возможно меньшей длине. Рекомендуется прямоугольная конфигурация печатных проводников. Проводники шире 5 мм (экраны) должны иметь вырезы (щелевидные, прямоугольные, овальные). Эти вырезы показывают на чертеже печатной платы.

Для построения устройства используем двухсторонний фольгированный стеклотекстолит марки СФ 2351,5 (ГОСТ 10316 78). Размеры печатной платы – 100 мм х 140 мм, толщина 1,5 мм. В связи с пониженной плотностью монтажа микросхем, для вычерчивания печатных рисунков используем координатную сетку с шагом 2,5 мм. Так как на плате нет металлизированных отверстий, то для ее изготовления применим химический метод. Для монтажа микросхем и конденсаторов в плате высверливаются отверстия диаметром 0,8 мм.

Для запитывания микросхем используются навесные шины питания. Так как устройство будет располагаться в корпусе вычислительной системы, то воздействие внешних факторов на схему исключается. Поэтому дополнительные защитные покрытия платы не используются.

8 Техника безопасности и экология

8.1 Техника безопасности

При производстве электромонтажных работ необходимо соблюдать общие требования безопасности.

К работе на участке должны допускаться только те лица, которые прошли вводный инструктаж, первичный инструктаж на рабочем месте и обучение безопасным приемам труда с обязательной проверкой знаний. Лица, не прошедшие проверку знаний, к самостоятельной работе не допускаются. На рабочем месте нельзя пользоваться открытым огнем, допускать скопление пыли на оборудовании и рабочих местах. При обнаружении пожара или загорания необходимо немедленно сообщить об этом в пожарную охрану и приступить к тушению пожара имеющимися средствами пожаротушения. Лица, нарушающие требования по охране труда, в зависимости от последствий нарушения, несут дисциплинарную, материальную или уголовную ответственность.

Перед началом работы нужно:

привести в порядок спецодежду;

проверить исправность электрооборудования на своем рабочем месте и обо всех замеченных неисправностях сообщить мастеру;

требующиеся инструменты, приспособления, детали и материалы расположить в удобном и безопасном для работы порядке;

проверить исправность местной вентиляции.

Степень нагрева паяльника проверяется на кусочке припоя, а не на ощупь. Все операции пайки и лужения выполняются при включенной вентиляции. Паяльник в перерывах между пайками разрешается держать только на специальной подставке. При временном отключении тока или при уходе с места работы, даже на короткое время, электроинструмент обязательно отключать от сети. Вытаскивая вилку из розетки, следует держать ее за корпус, а не за шнур. Демонтаж радиоаппаратуры отпайку проводов производить в защитных очках.

В помещении, где производится пайка припоем, содержащим свинец, не допускать принятие пищи, вода, хранения личных вещей во избежание попадания свинца в организм человека.

Во время работы нельзя отвлекаться самому и отвлекать других посторонними делами и разговорами.

8.2 Экология

Атмосфера всегда содержит определенное количество примесей, поступающих от естественных источников. Более загрязненные зоны возникают в местах активной жизнедеятельности человека. В последнее время в промышленности стали применять практически все элементы таблицы Менделеева. Это существенно сказалось на состоянии промышленных выбросов и привело к качественно новому загрязнению атмосферы, а в частности, синтетическими соединениями, не существующими в природе, радиацией, канцерогенными и другими элементами.

Количество поступающих в атмосферу отходов достигает колоссальных размеров. Наиболее остро экологическая проблема стоит в городах, где на относительно незначительной территории сконцентрировано большое число промышленных объектов, транспорта и где сосредоточено более трети всего населения нашей планеты. В воздухе, удаляемом из цехов, вредные вещества находятся в виде пыли, тонкодисперсного тумана, паров и газов. Вредные вещества, содержащиеся в воздухе даже не в значительных концентрациях, способны проникать в организм человека различными путями с разнообразными клиническими проявлениями.

Если рассматривать отдельно электрическую промышленность, а в частности производство печатных плат, то нужно отметить, что в процессе их изготовления должны соблюдаться правила и положения, направленные на предотвращение загрязнения окружающей среды.

При изготовлении печатных плат ведется много работы в непосредственном контакте человека с лаками, щелочью, кислотами. Наиболее интенсивнее вредные вещества находятся в большом

количестве при выделении в процессе кислотного и щелочного травления. Для таких работ предназначены индивидуальные средства защиты. Чтобы хоть как–то компенсировать загрязнение природы, нужно соблюдать правила техники безопасности, законы и постановления, которые вплотную соприкасаются с требованиями охраны окружающей среды.

Для того чтобы снизить уровень загрязнения, хотя бы до минимально возможного уровня, необходимо применять специальное оборудование, например, для очистки вентиляционного воздуха необходимо использовать фильтры, которые нейтрализовали бы токсичные вещества.

В настоящее время микросхемы выпускаются миллионными сериями и вопрос о защите окружающей среды встает еще более остро, поэтому наиболее широкое распространение получило безотходное производство.

Для снижения промышленных выбросов необходимо искать новые технологические решения, с помощью которых был бы возможен переход на новые методы производства с минимальным загрязнением окружающей среды.

9 Заключение

Рассматривая в данном курсовом проекте работу многофункционального арифметическологического устройства, я пришла к выводу, что АЛУ реализует важную часть процесса обработки данных. Заданием на курсовой проект являлось создание схемы многофункционального АЛУ. В результате работы были рассмотрены схемы обобщенной структуры АЛУ процессоров, построены структурная и принципиальная схемы, был произведен логический расчет, а также были рассчитаны потребляемая мощность, быстродействие и надежность схемы.

Исходя из задания, построена схема, для которой подобрана элементная база, выбраны параметры применяемых микросхем серии К155, К555 и К1533. В технологической части рассмотрены способы монтажа элементов на печатные платы.

Также в курсовом проекте были затронуты вопросы экологии и техники безопасности.

10 Список литературы

1. «Интегральные микросхемы»: Справочник / Б. В. Тарабрин, Л.Ф.Лунин, Ю. Н. Смирнов и др.; Под ред. Б. В. Тарабрина.– М.: 1985г.

2. Каган Б. М. «Электронные вычислительные машины и системы»: Учеб. пособие для вузов. – М.: 1991 г.

3. Нешумова К. А. «Электронные вычислительные машины и системы». Учеб. для техникумов спец. ЭВТ. – М.: 1989 г.

4. Нефедов А. В. «Интегральные микросхемы и их зарубежные аналоги»: Справочник. Т. 2. – М.: 1997 г.

5. Нефедов А. В. «Интегральные микросхемы и их зарубежные аналоги»: Справочник. Т. 5. – М.: 2000 г.

6. Нефедов А. В. «Интегральные микросхемы и их зарубежные аналоги»: Справочник. Т. 10. – М.: 2001 г.

7. Орлов И. А. «Эксплуатация и ремонт ЭВМ, организация работы вычислительного центра»: Учебник для техникумов. – М. – 1989 г.